org.appliedtopology.tda4j
Package for the Scala library TDA4j
Attributes
Members list
Type members
Experimental classlikes
Attributes
- Experimental
- true
- Supertypes
BronKerbosch
implements the creation of a Vietoris-Rips complex by running the Bron-Kerbosch clique finder algorithm and then sorting the resulting cliques before returning them in a Seq[FilteredAbstractSimplex[V,Double]]
.
BronKerbosch
implements the creation of a Vietoris-Rips complex by running the Bron-Kerbosch clique finder algorithm and then sorting the resulting cliques before returning them in a Seq[FilteredAbstractSimplex[V,Double]]
.
Implements apply
so that you call the object with an appropriate metric space and optional maximum filtration value and receive a sequence of simplices back.
Attributes
- Experimental
- true
- Supertypes
Attributes
- Experimental
- true
- Supertypes
-
trait Serializabletrait Producttrait Equalstrait SpatialQuery[VertexT]class Objecttrait Matchableclass AnyShow all
Attributes
- Experimental
- true
- Supertypes
- Known subtypes
-
trait OrderedCell
Attributes
- Experimental
- true
- Supertypes
-
trait IterableOnce[CellT]trait Filterable[FiltrationT]class Objecttrait Matchableclass AnyShow all
- Known subtypes
-
trait CubeStream[FiltrationT]class MaskedSymmetricRipserStream[KeyT]class RipserStreamBaseclass RipserStreamclass SymmetricRipserStream[KeyT]class RipserStreamOf[VertexT]class RipserStreamSparseclass VietorisRips[VertexT]class AlphaShapesShow all
Attributes
- Experimental
- true
- Supertypes
-
class Objecttrait Matchableclass Any
- Known subtypes
-
Attributes
- Companion
- object
- Experimental
- true
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Companion
- object
- Experimental
- true
- Supertypes
-
class Objecttrait Matchableclass Any
- Known subtypes
-
class BronKerbosch[VertexT]class LazyStratifiedCliqueFinder[VertexT]class MaskedSymmetricRipserVR[KeyT]class RipserCliqueFinderclass SymmetricRipserCliqueFinder[KeyT]class ZomorodianIncremental[VertexT]Show all
Attributes
- Companion
- class
- Experimental
- true
- Supertypes
-
class Objecttrait Matchableclass Any
- Self type
-
CliqueFinder.type
Attributes
- Experimental
- true
- Supertypes
- Known subtypes
The coproduct of two simplicial sets, defined as the simplicial set generated by the union of generators of the two lists.
The coproduct of two simplicial sets, defined as the simplicial set generated by the union of generators of the two lists.
If simplices happen to be in both the factors, this implementation currently makes no effort to distinguish them. Face maps will be tried from both factors, using the left-most that is actually defined on the given element. Both of these implementation choices may be unwise.
Attributes
- Experimental
- true
- Supertypes
-
trait Serializabletrait Producttrait Equalstrait SimplicialSetclass Objecttrait Matchableclass AnyShow all
Attributes
- Experimental
- true
- Supertypes
-
trait IterableOnce[ElementaryCube]trait Filterable[FiltrationT]class Objecttrait Matchableclass AnyShow all
Attributes
- Experimental
- true
- Supertypes
-
class Objecttrait Matchableclass Any
- Self type
-
Cubical.type
Attributes
- Experimental
- true
- Supertypes
-
trait Serializabletrait Producttrait Equalstrait ElementaryIntervalclass Objecttrait Matchableclass AnyShow all
Primary class for representing a generic SimplicialSetElement. This case class carries references to its base element and a list of degeneracies. (both simplicialGenerator and SimplicialWrapper will specifically create elements without degeneracies and are meant to be used as base elements)
Primary class for representing a generic SimplicialSetElement. This case class carries references to its base element and a list of degeneracies. (both simplicialGenerator and SimplicialWrapper will specifically create elements without degeneracies and are meant to be used as base elements)
If you have no reason to build something else, your simplicial set elements should probably be instances of this case class.
Instantiation is through the companion object, where the public constructor does some normalization on the data the object carries.
Attributes
- Companion
- object
- Experimental
- true
- Supertypes
-
trait Serializabletrait Producttrait Equalstrait SimplicialSetElementclass Objecttrait Matchableclass AnyShow all
Attributes
- Companion
- class
- Experimental
- true
- Supertypes
-
trait Producttrait Mirrorclass Objecttrait Matchableclass Any
- Self type
Attributes
- Experimental
- true
- Supertypes
- Known subtypes
-
class AlphaShapes
Attributes
- Experimental
- true
- Supertypes
-
trait Serializabletrait Producttrait Equalsclass Objecttrait Matchableclass AnyShow all
Attributes
- Companion
- object
- Experimental
- true
- Supertypes
-
class Objecttrait Matchableclass Any
- Known subtypes
-
class DegenerateIntervalclass FullInterval
Attributes
- Companion
- trait
- Experimental
- true
- Supertypes
-
trait Sumtrait Mirrorclass Objecttrait Matchableclass Any
- Self type
-
ElementaryInterval.type
Takes in an point cloud and computes the Euclidean distance on demand.
Takes in an point cloud and computes the Euclidean distance on demand.
Value parameters
- pts
-
Point cloud matrix represented as a
Seq[Seq[Double]]
. The class expects but does not enforce:pts(x1).size == pts(x2).size
for allx1,x2
Attributes
- Companion
- object
- Experimental
- true
- Supertypes
Attributes
- Companion
- class
- Experimental
- true
- Supertypes
-
class Objecttrait Matchableclass Any
- Self type
-
EuclideanMetricSpace.type
A symmetry-aware compressed indexed sequence container that keeps track of representatives of each orbit, and generates the rest of the orbit as and when needed, including an iterator structure that also only generates the rest of the orbit when needed, and a method for checking whether a particular simplex is an orbit representatives in a way that does not hold on to orbit elements (thus allowing them to get instantly garbage collected).
A symmetry-aware compressed indexed sequence container that keeps track of representatives of each orbit, and generates the rest of the orbit as and when needed, including an iterator structure that also only generates the rest of the orbit when needed, and a method for checking whether a particular simplex is an orbit representatives in a way that does not hold on to orbit elements (thus allowing them to get instantly garbage collected).
Type parameters
- KeyT
-
The type of the group element indices.
- VertexT
-
The type of the vertices.
Value parameters
- ordering$VertexT$0
-
We depend on a total order of simplices, which we generate from a total order of vertices. This carries that ordering.
- representatives
-
A sequence of simplices, each representative for its own orbit
- symmetry
-
A
SymmetryGroup
object carrying information about symmetries
Attributes
- Experimental
- true
- Supertypes
-
trait Equalsclass Objecttrait Matchableclass AnyShow all
- Self type
-
Takes in an explicit distance matrix, and performs lookups in this distance matrix.
Takes in an explicit distance matrix, and performs lookups in this distance matrix.
Value parameters
- dist
-
Distance matrix represented as a
Seq[Seq[Double]]
. The class expects but does not enforce:dist(x1).size == dist(x2).size
for allx1,x2
dist(x).size == dist.size
for allx
dist(x)(x) == 0
for allx
- The triangle inequality
Attributes
- Experimental
- true
- Supertypes
Attributes
- Experimental
- true
- Supertypes
- Self type
-
Attributes
- Experimental
- true
- Supertypes
-
trait Clearableclass Objecttrait Matchableclass AnyShow all
- Self type
-
Attributes
- Experimental
- true
- Supertypes
-
class Objecttrait Matchableclass Any
- Known subtypes
-
trait CubeStream[FiltrationT]class MaskedSymmetricRipserStream[KeyT]class RipserStreamBaseclass RipserStreamclass SymmetricRipserStream[KeyT]class RipserStreamOf[VertexT]class RipserStreamSparseclass VietorisRips[VertexT]class AlphaShapestrait DoubleFiltration[CellT]Show all
Attributes
- Experimental
- true
- Supertypes
- Known subtypes
-
trait CubeStream[FiltrationT]class MaskedSymmetricRipserStream[KeyT]class RipserStreamBaseclass RipserStreamclass SymmetricRipserStream[KeyT]class RipserStreamOf[VertexT]class RipserStreamSparseclass VietorisRips[VertexT]class AlphaShapestrait DoubleFiltration[CellT]Show all
Attributes
- Experimental
- true
- Supertypes
-
class Objecttrait Matchableclass Any
Interface for being a finite metric space
Interface for being a finite metric space
Type parameters
- VertexT
-
Type of the vertex indices for the metric space
Attributes
- Companion
- object
- Experimental
- true
- Supertypes
-
class Objecttrait Matchableclass Any
- Known subtypes
Convenience functionality for metric spaces.
Convenience functionality for metric spaces.
Attributes
- Companion
- trait
- Experimental
- true
- Supertypes
-
class Objecttrait Matchableclass Any
- Self type
-
FiniteMetricSpace.type
Attributes
- Companion
- trait
- Experimental
- true
- Supertypes
-
trait Sumtrait Mirrorclass Objecttrait Matchableclass Any
- Self type
-
FractionalExpr.type
This functionality is an experiment in using algebraic effect structures for flexible coefficient choices. The idea is that each actual computation that is needed is built up as an AST, and simplified; and a coefficient choice is an effect handler that evaluates the remainder in the field of coefficients to be used.
This functionality is an experiment in using algebraic effect structures for flexible coefficient choices. The idea is that each actual computation that is needed is built up as an AST, and simplified; and a coefficient choice is an effect handler that evaluates the remainder in the field of coefficients to be used.
Attributes
- Experimental
- true
- Supertypes
-
class Objecttrait Matchableclass Any
- Known subtypes
-
object doubleHandler
Attributes
- Experimental
- true
- Supertypes
-
trait Serializabletrait Producttrait Equalstrait ElementaryIntervalclass Objecttrait Matchableclass AnyShow all
Attributes
- Experimental
- true
- Supertypes
-
class Objecttrait Matchableclass Any
- Known subtypes
-
trait Celltrait OrderedCell
Attributes
- Experimental
- true
- Supertypes
The HyperCube
example of a symmetric point set. Vertices are all binary strings of length bitlength
. Distances on the hypercube are Hamming distances between binary strings, ie how many bits differ between the two strings.
The HyperCube
example of a symmetric point set. Vertices are all binary strings of length bitlength
. Distances on the hypercube are Hamming distances between binary strings, ie how many bits differ between the two strings.
Binary strings are throughout represented as immutable.BitSet.
Value parameters
- bitlength
-
The dimension of the hypercube.
Attributes
- Experimental
- true
- Supertypes
Attributes
- Experimental
- true
- Supertypes
- Known subtypes
Symmetry group of the hypercube under permutations of bit positions. No rotations of the hypercube included here.
Symmetry group of the hypercube under permutations of bit positions. No rotations of the hypercube included here.
Value parameters
- bitlength
-
Dimension of the hypercube.
Attributes
- Experimental
- true
- Supertypes
- Known subtypes
Attributes
- Experimental
- true
- Supertypes
Attributes
- Experimental
- true
- Supertypes
Attributes
- Experimental
- true
- Supertypes
-
trait Serializabletrait Producttrait Equalstrait SpatialQuery[VertexT]class Objecttrait Matchableclass AnyShow all
This implementation of Kruskal's algorithm will return two iterators of vertex pairs: the first iterator is a Minimal Spanning Tree in increasing weight order, while the second iterator gives all the non-included
This implementation of Kruskal's algorithm will return two iterators of vertex pairs: the first iterator is a Minimal Spanning Tree in increasing weight order, while the second iterator gives all the non-included
Attributes
- Companion
- object
- Experimental
- true
- Supertypes
-
class Objecttrait Matchableclass Any
This is an implementation of the SimplicialSet trait that allows for infinite generating sets. It also assembles face maps for you from just defining them on the generators and inferring their results on degeneracies.
This is an implementation of the SimplicialSet trait that allows for infinite generating sets. It also assembles face maps for you from just defining them on the generators and inferring their results on degeneracies.
Attributes
- Experimental
- true
- Supertypes
-
trait Serializabletrait Producttrait Equalstrait SimplicialSetclass Objecttrait Matchableclass AnyShow all
Attributes
- Experimental
- true
- Supertypes
Attributes
- Experimental
- true
- Supertypes
-
class Objecttrait Matchableclass Any
- Self type
Attributes
- Experimental
- true
- Supertypes
-
class Objecttrait Matchableclass Any
- Self type
-
LazyVietorisRips.type
Attributes
- Experimental
- true
- Supertypes
Attributes
- Experimental
- true
- Supertypes
Trait that defines what it means to have an ordered basis
Trait that defines what it means to have an ordered basis
Attributes
- Experimental
- true
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Experimental
- true
- Supertypes
This class enumerates permutations in order to allow permutations of bit-positions to fill out the symmetry group of the hypercube.
This class enumerates permutations in order to allow permutations of bit-positions to fill out the symmetry group of the hypercube.
Value parameters
- elementCount
-
How many objects are permuted?
Attributes
- Experimental
- true
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Experimental
- true
- Supertypes
-
trait Serializabletrait Producttrait Equalstrait SimplicialSetclass Objecttrait Matchableclass AnyShow all
For now this is only written for finitely generated simplicial sets.
For now this is only written for finitely generated simplicial sets.
Anything with potentially infinite generator sets will need special handling.
Attributes
- Experimental
- true
- Supertypes
-
trait Serializabletrait Producttrait Equalstrait SimplicialSetElementclass Objecttrait Matchableclass AnyShow all
The Pushout of a diagram
The Pushout of a diagram
$left \xrightarrow{f} center \xleftarrow{g} right$ is the subset of the product $left \times right$ of elements that hit the same value in $center$.
Attributes
- Experimental
- true
- Supertypes
-
trait Serializabletrait Producttrait Equalstrait SimplicialSetclass Objecttrait Matchableclass AnyShow all
Attributes
- Companion
- object
- Experimental
- true
- Supertypes
-
trait Serializabletrait Producttrait Equalstrait SimplicialSetclass Objecttrait Matchableclass AnyShow all
Attributes
- Companion
- class
- Experimental
- true
- Supertypes
-
trait Producttrait Mirrorclass Objecttrait Matchableclass Any
- Self type
Specifies what it means for the type Self
to be a module (or vector space) over the [Numeric] (ie ring-like) type R
.
Specifies what it means for the type Self
to be a module (or vector space) over the [Numeric] (ie ring-like) type R
.
A minimal implementation of this trait will define zero
, plus
, scale
, and at least one of minus
and negate
Type parameters
- R
-
Type of the ring coefficients
- Self
-
Type of the module elements.
Attributes
- Experimental
- true
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Experimental
- true
- Supertypes
Attributes
- Experimental
- true
- Supertypes
-
trait Serializabletrait Producttrait Equalstrait Filterable[Double]class Objecttrait Matchableclass AnyShow all
Attributes
- Companion
- object
- Experimental
- true
- Supertypes
- Known subtypes
-
class SymmetricRipserStream[KeyT]
Attributes
- Companion
- class
- Experimental
- true
- Supertypes
-
class Objecttrait Matchableclass Any
- Self type
-
RipserStream.type
Attributes
- Experimental
- true
- Supertypes
- Known subtypes
-
class RipserStreamclass SymmetricRipserStream[KeyT]
Attributes
- Experimental
- true
- Supertypes
Attributes
- Experimental
- true
- Supertypes
Attributes
- Experimental
- true
- Supertypes
-
trait PointSetclass Objecttrait Matchableclass Any
Class representing an abstract simplex. Abstract simplices are given by sets (of totally ordered vertices) and inherit from Cell
so that the class has a boundary
and a dim
method.
Class representing an abstract simplex. Abstract simplices are given by sets (of totally ordered vertices) and inherit from Cell
so that the class has a boundary
and a dim
method.
You should never have reason to use the constructor directly (...and if you do, you should make sure to give the internal SortedSet
yourself) - instead use the factory method in the companion object. In code this means that instead of new Simplex[Self](a,b,c)
you would write Simplex[Self](a,b,c)
.
Type parameters
- VertexT
-
Vertex type
Value parameters
- ordering
-
Ordering of the vertex type
- vertices
-
Vertices of the simplex
Attributes
- Companion
- object
- Experimental
- true
- Supertypes
-
trait Serializabletrait Producttrait Equalsclass Objecttrait Matchableclass AnyShow all
Attributes
- Experimental
- true
- Supertypes
-
class Objecttrait Matchableclass Any
Abstract trait for representing a sequence of simplices.
Abstract trait for representing a sequence of simplices.
Type parameters
- FiltrationT
-
Type of the filtration values.
- VertexT
-
Type of vertices of the contained simplices.
Attributes
- Todo
-
We may want to change this to inherit instead from
IterableOnce[Simplex[VertexT]]
, so that a lazy computed simplex stream can be created and fit in the type hierarchy. - Companion
- object
- Experimental
- true
- Supertypes
- Known subtypes
-
class MaskedSymmetricRipserStream[KeyT]class RipserStreamBaseclass RipserStreamclass SymmetricRipserStream[KeyT]class RipserStreamOf[VertexT]class RipserStreamSparseclass VietorisRips[VertexT]Show all
Attributes
- Companion
- trait
- Experimental
- true
- Supertypes
-
class Objecttrait Matchableclass Any
- Self type
-
SimplexStream.type
Attributes
- Experimental
- true
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Experimental
- true
- Supertypes
-
class Objecttrait Matchableclass Any
- Known subtypes
-
Attributes
- Experimental
- true
- Supertypes
-
trait Serializabletrait Producttrait Equalsclass Objecttrait Matchableclass AnyShow all
The interface for defining a simplicial set.
The interface for defining a simplicial set.
A simplicial set must have:
- A sequence of generating elements. These are considered non-degenerate in the context of this simplicial set. This sequence will be assumed to be in increasing order of dimension (so that things like nSkeleton can stop searching when it hits large enough dimensions), but this is not structurally enforced by the trait itself.
- For each index $i$, a partial function from SimplicialSetElement to SimplicialSetElement encoding the $i$th face map. These partial functions must be defined on all the generators.
With these building blocks, a simplicial set also has:
- A contains function with an
∋
alias. - A method for listing all n-dimensional cells (degenerate as well as non-degenerate).
- A total order of
SimplicialSetElement
s, as agiven
declaration. - An instance of the
Cell
typeclass forSimplicialSetElement
s, as agiven
declaration. This instance works on the assumption that you will want to work in the normalized Moore complex, and will treat the generators as your cells. - Functions to compute an f_vector (of non-degenerate elements), a full f-vector (of all elements), and the Euler characteristic.
Attributes
- Companion
- object
- Experimental
- true
- Supertypes
-
class Objecttrait Matchableclass Any
- Known subtypes
-
class Coproductclass LazySimplicialSetclass Productclass Pushoutclass QuotientSimplicialSetclass Singular[VertexT]class SubSimplicialSetShow all
Attributes
- Companion
- trait
- Experimental
- true
- Supertypes
-
class Objecttrait Matchableclass Any
- Self type
-
SimplicialSet.type
Defining trait for being an element of some simplicial set. Elements keep track of their own dimension, what degeneracies (if any) have been applied, and what the base non-degenerate element is.
Defining trait for being an element of some simplicial set. Elements keep track of their own dimension, what degeneracies (if any) have been applied, and what the base non-degenerate element is.
Attributes
- Companion
- object
- Experimental
- true
- Supertypes
-
class Objecttrait Matchableclass Any
- Known subtypes
Attributes
- Companion
- trait
- Experimental
- true
- Supertypes
-
class Objecttrait Matchableclass Any
- Self type
-
SimplicialSetElement.type
************** Examples
************** Examples
Attributes
- Experimental
- true
- Supertypes
-
class Objecttrait Matchableclass Any
- Self type
Wrapper class to allow any data type with a defined dimension function (as witnessed by the typeclass HasDimension to be a base element for a SimplicialSetElement.
Wrapper class to allow any data type with a defined dimension function (as witnessed by the typeclass HasDimension to be a base element for a SimplicialSetElement.
Attributes
- Experimental
- true
- Supertypes
-
trait Serializabletrait Producttrait Equalstrait SimplicialSetElementclass Objecttrait Matchableclass AnyShow all
The Singular Simplicial Set of a simplicial complex (seen as a sequence of simplices).
The Singular Simplicial Set of a simplicial complex (seen as a sequence of simplices).
Attributes
- Companion
- object
- Experimental
- true
- Supertypes
******* Efficient Spatial Queries *******
******* Efficient Spatial Queries *******
Attributes
- Experimental
- true
- Supertypes
-
class Objecttrait Matchableclass Any
- Known subtypes
-
class BruteForce[VertexT]class JVPTree[VertexT]
Attributes
- Experimental
- true
- Supertypes
-
trait IterableOnce[CellT]trait Filterable[FiltrationT]class Objecttrait Matchableclass AnyShow all
- Known subtypes
-
class AlphaShapes
Attributes
- Experimental
- true
- Supertypes
- Known subtypes
Attributes
- Companion
- object
- Experimental
- true
- Supertypes
-
trait Serializabletrait Producttrait Equalstrait SimplicialSetclass Objecttrait Matchableclass AnyShow all
Attributes
- Companion
- class
- Experimental
- true
- Supertypes
-
trait Producttrait Mirrorclass Objecttrait Matchableclass Any
- Self type
-
SubSimplicialSet.type
Attributes
- Experimental
- true
- Supertypes
-
trait Serializabletrait Producttrait Equalstrait SimplicialSetElementclass Objecttrait Matchableclass AnyShow all
Attributes
- Experimental
- true
- Supertypes
Attributes
- Experimental
- true
- Supertypes
-
class RipserStreamclass RipserStreamBasetrait Filterable[Double]class Objecttrait Matchableclass AnyShow all
Symmetry-aware version of Zomorodian's incremental algorithm for generating Vietoris-Rips complexes. The algorithm object needs access to a SymmetryGroup
instance that encodes all we know about the symmetries.
Symmetry-aware version of Zomorodian's incremental algorithm for generating Vietoris-Rips complexes. The algorithm object needs access to a SymmetryGroup
instance that encodes all we know about the symmetries.
Type parameters
- KeyT
-
Type of the indices for the group elements in
symmetry
. - VertexT
-
Type of the vertices of the complex.
Value parameters
- ordering$VertexT$0
-
We need to sort simplices, so we need to sort vertices.
- symmetry
-
Symmetry group details.
Attributes
- Experimental
- true
- Supertypes
- Self type
-
A trait encoding the interface for a group of symmetries acting on the vertex set of a simplicial complex. The group and its action needs to be fully known and implemented.
A trait encoding the interface for a group of symmetries acting on the vertex set of a simplicial complex. The group and its action needs to be fully known and implemented.
This structure assumes that you can provide a group action on vertices, and will from that deduce a group action on simplices by acting pointwise: g.[a,b,c] = [ga,gb,gc]
, collapsing any degeneracies.
A fundamentally important part of the symmetry group action for our applications is to be able to pick out canonical representatives for each orbit, and to recognize when a simplex is such a canonical representative.
Type parameters
- KeyT
-
The type used to enumerate the group elements.
- VertexT
-
The type of the vertices.
Attributes
- Experimental
- true
- Supertypes
-
class Objecttrait Matchableclass Any
- Known subtypes
-
class HyperCubeSymmetryclass HyperCubeSymmetryBitSet
- Self type
-
Attributes
- Experimental
- true
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Experimental
- true
- Supertypes
-
class Objecttrait Matchableclass Any
Convenience definition to allow us to choose a specific implementation.
Convenience definition to allow us to choose a specific implementation.
Attributes
- Returns
-
A function-like object with the signature
VietorisRips : (MetricSpace[VertexT], Double) => Seq[FilteredAbstractSimplex[VertexT,Double]]
- Experimental
- true
- Supertypes
- Self type
-
VietorisRips[VertexT]
Attributes
- Experimental
- true
- Supertypes
Attributes
- Experimental
- true
- Supertypes
- Self type
-
doubleHandler.type
Attributes
- Experimental
- true
- Supertypes
- Self type
Attributes
- Experimental
- true
- Supertypes
- Self type
Value members
Experimental methods
Helper function to interleave two lazy lists -- so that we can take their union without having to run through one of them completely before going to the other one.
Helper function to interleave two lazy lists -- so that we can take their union without having to run through one of them completely before going to the other one.
Attributes
- Experimental
- true
Attributes
- Experimental
- true
Helper function to create a CellStream instance from any simplicial set. If no filtration value function is provided, it will use the constant function with the smallest
value in the Filterable typeclass implementation for FiltrationT
.
Helper function to create a CellStream instance from any simplicial set. If no filtration value function is provided, it will use the constant function with the smallest
value in the Filterable typeclass implementation for FiltrationT
.
Attributes
- Experimental
- true
Attributes
- Experimental
- true
Convenience function for comfortably generating one-shot implementations of SimplicialSetElement.
Convenience function for comfortably generating one-shot implementations of SimplicialSetElement.
Two SimplicialSetElement
s generated by this are unequal unless they are the exact same object instance.
Attributes
- Experimental
- true
Givens
Experimental givens
Attributes
- Experimental
- true
Attributes
- Experimental
- true
Attributes
- Experimental
- true
Attributes
- Experimental
- true
Attributes
- Experimental
- true
Attributes
- Experimental
- true
Attributes
- Experimental
- true
Attributes
- Experimental
- true
Attributes
- Experimental
- true
Attributes
- Experimental
- true
Attributes
- Experimental
- true
Attributes
- Experimental
- true
Attributes
- Experimental
- true
A given
instance that allows us to automatically sort bitsets lexicographically.
A given
instance that allows us to automatically sort bitsets lexicographically.
Attributes
- Experimental
- true